

# Fan Efficiency Metrics

Mark Stevens, Executive Director
Michael Ivanovich, Senior Director, Industry Relations
Air Movement and Control Association International, Inc.

#### **Presentation Outline**

- Introduction to AMCA
- Why Obsolete the Current Metric (FEG)?
- Introduction of the Fan Energy Index
- Questions

#### Introduction to AMCA



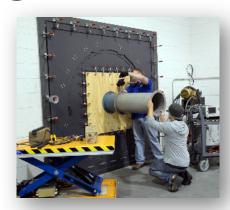
- Air Movement and Control Association Int.
- Not-for-profit manufacturers association established in 1917
- More than 370 member companies worldwide
- Mission is to promote the health, growth and integrity of the air movement and control industry



### Content Development

- Test Standards
  - ANSI Accredited
  - ISO Member
- Application Guides
- White Papers
- Videos
- Magazine
- Social Media




**AMCA Educational Programs** 

- Meetings
- Conferences
- Engineering Seminars
- Workshops

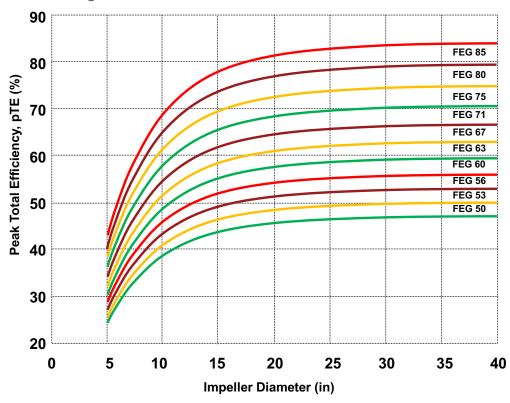


#### Worldwide Network of Test Labs

- Chicago headquarters
- Regional independent labs
  - Dubai
  - Malaysia
  - France
  - Korea
- Accredited manufacture's labs
  - > 50 worldwide



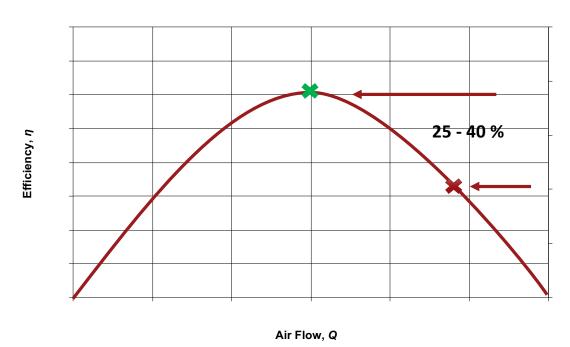



### The AMCA Certified Ratings Program

 Helps ensure honest and accuracy in product rating



## Why Obsolete the Current Metric (FEG)?


## Fan Efficiency Grade



# Single Point Metric



# Leaves Efficiency Gains on the Table



## Fan Efficiency Varies with Size for a Duty Point

| Fan Size<br>[in.] (mm) | Fan Speed<br>(rpm) | Fan Power<br>(bhp) [kW] | Actual Total Efficiency (%) | FEG |
|------------------------|--------------------|-------------------------|-----------------------------|-----|
| 18 (460)               | 3,238              | 11.8 [8.8]              | 40.1                        | 85  |
| 20 (510)               | 2,561              | 9.6 [7.2]               | 49.5                        | 85  |
| 22 (560)               | 1,983              | 8.0 [6.0]               | 59.0                        | 85  |
| 24 (610)               | 1,579              | 6.8 [5.0]               | 69.1                        | 85  |
| 27 (685)               | 1,289              | 6.2 [4.6]               | 75.8                        | 85  |
| 30 (770)               | 1,033              | 5.7 [4.3]               | 82.5                        | 85  |
| 36 (920)               | 778                | 6.0 [4.5]               | 78.7                        | 85  |

### Finally, we also needed to address:

- The regulation of electrical input power
- The use of fan static pressure for non-ducted fans
- The elimination of categories to allow product substitution
- DOE could not regulate fan application, but they COULD regulate how fan data is presented to the public

## Introduction of the Fan Energy Index

### Fan Efficiency Index (FEI)

$$FEI = rac{Selected\ Fan\ Efficiency}{Baseline\ Fan\ Efficiency}$$

$$FEI = rac{Baseline\ Fan\ Electrical\ Input\ Power}{Selected\ Fan\ Electrical\ Input\ Power}$$

### Baseline Fan Shaft Input Power

$$H_{i,ref} = \frac{(Q_i + Q_0)(P + P_0 \times \frac{\rho}{\rho_{std}})}{1000 \times \eta_o}$$

 $Q_i$  - selected fan airflow

 $P_i$  - selected fan total pressure (ducted), or tatic pressure (nonducted)

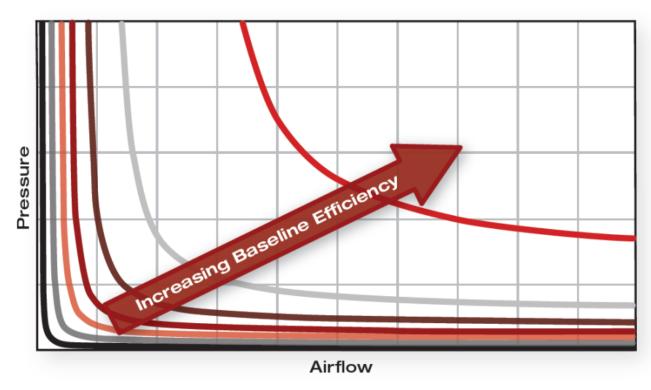
P - air density

ρ<sub>std</sub> - standard air density

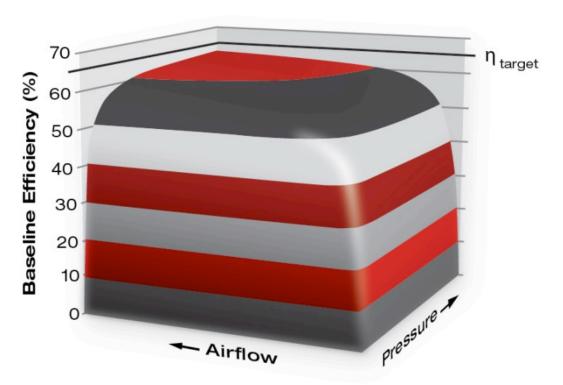
 $Q_0$  - 0.118 m3/s (SI), or 250 cfm (IP)

 $P_0$  - 100 Pa (SI), or 0.40 in.wg (IP)

 $\eta_0$  - 66% for ducted applications and 60% for nonducted applications


### Baseline Electrical Input Power

$$H_{i,ref} = \frac{(Q_i + Q_0)(P + P_0 \times \frac{\rho}{\rho_{std}})}{1000 \times \eta_o}$$


 $W_{i,ref} = H_{i,ref} + AMCA 203 Belt Loss + IE3 Motor loss$ 

 $W_{i,ref}$  = Baseline Electrical Input Power

# Baseline Efficiency with Constant $\eta_o$



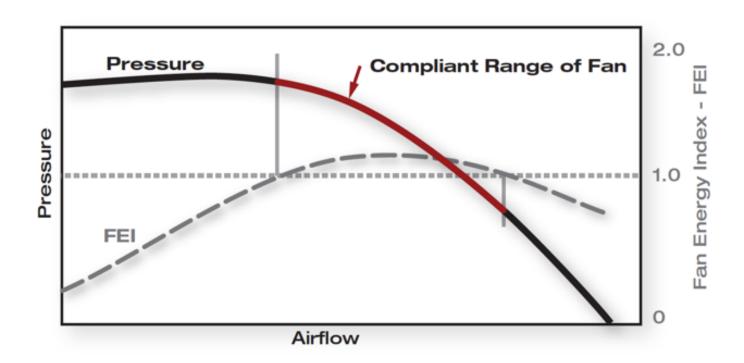
# Baseline Efficiency with Varying $\eta_o$



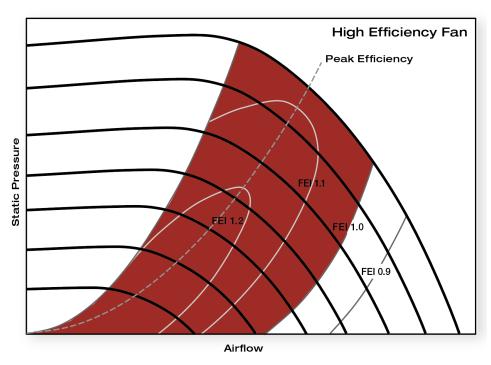
# Comparing FEI against FEG

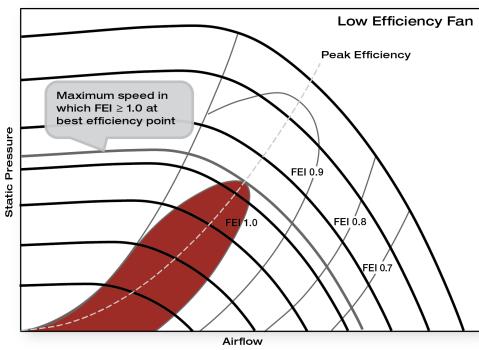
| Fan Size<br>[in.] (mm) | Fan Speed<br>(rpm) | Fan Power<br>(bhp) [kW] | Actual Total Efficiency (%) | Baseline<br>Power | FEG | FEI  |
|------------------------|--------------------|-------------------------|-----------------------------|-------------------|-----|------|
| 18 (460)               | 3,238              | 11.8 [8.8]              | 40.1                        | 7.96              | 85  | 0.67 |
| 20 (510)               | 2,561              | 9.6 [7.2]               | 49.5                        | 7.96              | 85  | 0.83 |
| 22 (560)               | 1,983              | 8.0 [6.0]               | 59.0                        | 7.96              | 85  | 0.99 |
| 24 (610)               | 1,579              | 6.8 [5.0]               | 69.1                        | 7.96              | 85  | 1.16 |
| 27 (685)               | 1,289              | 6.2 [4.6]               | 75.8                        | 7.96              | 85  | 1.28 |
| 30 (770)               | 1,033              | 5.7 [4.3]               | 82.5                        | 7.96              | 85  | 1.39 |
| 36 (920)               | 778                | 6.0 [4.5]               | 78.7                        | 7.96              | 85  | 1.32 |

More Comparisons


| Fan Size (in.)<br>[mm] | Fan Speed (rpm) | Speed Reduction<br>from Smallest<br>Diameter | Fan Power<br>(bhp) | Power Reduction<br>from Smallest<br>Diameter | Actual Total<br>Efficiency | Efficiency<br>improvement<br>Over Smallest<br>Diameter | √aseline Power<br>(bhp) | FEI  | FEI Improvement<br>over Smallest<br>Diamter |
|------------------------|-----------------|----------------------------------------------|--------------------|----------------------------------------------|----------------------------|--------------------------------------------------------|-------------------------|------|---------------------------------------------|
| 18 [460]               | 3238            |                                              | 11.8               |                                              | 40.10%                     |                                                        | 7.96                    | 0.67 |                                             |
| 20 [510]               | 2561            | 79%                                          | 9.56               | 81%                                          | 49.50%                     | 23%                                                    | 7.96                    | 0.83 | 24%                                         |
| 22 [560]               | 1983            | 61%                                          | 8.02               | 68%                                          | 59.00%                     | 47%                                                    | 7.96                    | 0.99 | 48%                                         |
| 24 [610]               | 1579            | 49%                                          | 6.84               | 58%                                          | 69.10%                     | 72%                                                    | 7.96                    | 1.16 | 73%                                         |
| 27 [685]               | 1289            | 40%                                          | 6.24               | 53%                                          | 75.80%                     | 89%                                                    | 7.96                    | 1.28 | 91%                                         |
| 30 [770]               | 1033            | 32%                                          | 5.73               | 49%                                          | 82.50%                     | 106%                                                   | 7.96                    | 1.39 | 107%                                        |
| 33 [840]               | 887             | 27%                                          | 5.67               | 48%                                          | 83.40%                     | 108%                                                   | 7.96                    | 1.4  | 109%                                        |
| 36 [920]               | 778             | 24%                                          | 6.01               | 51%                                          | 78.70%                     | 96%                                                    | 7.96                    | 1.32 | 97%                                         |

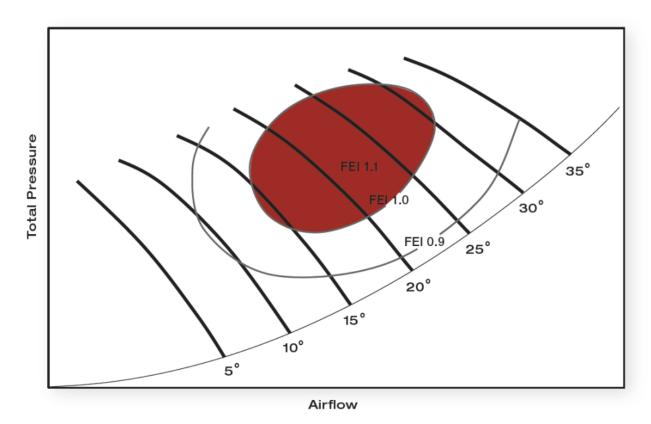
#### How Will FEI Be Used?


| Body                                     | FEI Requirement (forecast – not certain) |  |  |  |  |
|------------------------------------------|------------------------------------------|--|--|--|--|
| U.S. Federal or<br>California Regulation | FEI ≥ 1.0 at Design Point                |  |  |  |  |
| ASHRAE 90.1                              | FEI ≥ 1.0 at Design Point                |  |  |  |  |
| ASHRAE 189.1                             | FEI ≥ <b>1.10</b> at Design Point        |  |  |  |  |
| Rebates                                  | FEI = Savings over Baseline              |  |  |  |  |


FEI = 1.10 means 10% energy savings over baseline

## FEI Range for Constant Speed Fan




### FEI Range for Centrifugal with Speed Control





EFFICIENT FAN INEFFICIENT FAN

## FEI Range for Adjustable Pitch Axial



#### Status

- AMCA Standard 208 in ballot phase per ANSI process
- AMCA 208 will be integrated into ISO 12759
- Default losses for drive components based on AMCA 207 (draft ISO 12750)
- FEI would be calculated using rating data taken during AMCA 210 or ISO 5801 tests
- U.S. DOE regulation stalled, but would be based on FEI
- California stated regulation picking up where DOE left off
- ASHRAE 90.1 replacing FEG with FEI
- U.S. efficiency rebates will be based on FEI

#### Resources

- AMCA International: www.amca.org
- AMCA Standards Bookstore: www.amca.org/store

Thank You Very Much... and...Questions?